
Ranking the Rules and Instances of Decision

Trees ⋆

Yuh-Jye Lee and Yi-Ren Yeh

Dept. of Computer Science & Information Engineering,
National Taiwan University of Science & Technology, Taipei, Taiwan

{yuh-jye, M9315027}@mail.ntust.edu.tw

Abstract. Traditionally, decision trees rank instances by using the local
probability estimations for each leaf node. The instances in the same
leaf node will be estimated with equal probabilities. In this paper, we
propose a hierarchical ranking strategy by combining decision trees and
leaf weighted Näıve Bayes to improve the local probability estimation for
a leaf node. We consider the importance of the rules, and then rank the
instances fit in with the rules. Because the probability estimations based
on Näıve Bayes might be poor, we investigate some different techniques
which were proposed to modify Näıve Bayes as well. Experiments show
that our proposed method has significantly better performance than that
of other methods according to paired t-test. All results are evaluated by
using AUC (Area under ROC Curve) instead of classification accuracy.

1 Introduction

In many machine learning problems, the goal is not only correctly classifying
the instances. Ranking instances based on the class probabilities is more desir-
able for practical applications. For example, we would like to rank the resulting
pages returned by a search engine to match the user’s preference. In other words,
the requirements of some applications and problems are not only the boolean
response of “positive or negative”, but also the ranking according to the prob-
ability of being positive. Most learning models provide the information of the
probability estimation which might be used to rank instances. How to deal with
those information from learning models is an interesting research issue [17, 7, 13,
15]. We will focus on ranking the rules and instances generated by decision trees
model. We will use the term “local” to indicate that the estimation is based on a
particular leaf node information. Thus the local probability estimation of P (c|x)
is given by k

n
, where k is the number of training instances of class c in the leaf

node and n is the total number of training instances in the leaf node. However,
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decision trees built by C4.5 [19] have been observed to produce poor probability
estimations [18], even though they have a good performance in accuracy and
an intelligible result. The local probability estimated by this way is rough and
unreasonable. There are two main drawbacks of this intuitive approximation.
The instances in the same leaf node will be estimated with the same probability.
There is no difference between each individual instance in the same leaf node.
Moreover, there is no difference between the leaf nodes which have the same pro-
portion of positive instances but have different sizes. A more sophisticated way
will be needed for the local probability estimation. In this paper, we describe a
hierarchical ranking strategy by combining decision trees and Näıve Bayes. In the
first step, we apply Laplace smoothing technique to re-estimate local probability
for each leaf node. This will differentiate the leaf nodes which have the same
proportion of positive class instances. We will rank the rules based on these lo-
cal probabilities ordering. This also gives a grouping order for every instance. In
the second step, we build a leaf Näıve Bayes classifier, the Näıve Bayes classifier
generated by the instances in a leaf node, for each leaf node to rank the instances
in the leaf node. However, building a Näıve Bayes classifier for a small training
set tends to having a more serious zero frequency problem [21]. We will use the
information provided by the global Näıve Bayes classifier which is generated by
the entire training set as the prior knowledge in applying smoothing technique
to the leaf Näıve Bayes classifier. Thus, we can rank every instance in a hierar-
chical way. We test our proposed methods on 7 public available datasets from
UCI repository [2]. The experiment results show that our proposed method has
significantly better performance than that of other methods according to paired
t-test. All results are evaluated by using AUC (Area under ROC Curve) instead
of classification accuracy.

The paper is organized as follows. In Section 2, we discuss some related works
on improving decision trees ranking. Section 3 describes our hierarchical ranking
method in details. We report the experiment results and discuss the details of
tuning the parameters of our proposed method in Section 4. We conclude the
paper with a brief discussion in Section 5.

2 Related Work

Traditional decision trees algorithms, such as C4.5 and ID3, have been observed
to produce poor probability estimations. One of the reasons is that the algo-
rithms aim at building a small and accurate tree which biases against good
probability estimations [17]. Many techniques have been proposed to improve
the probability estimations of decision trees [7, 16, 22, 12, 1]. Most of them ap-
ply the smoothing methods [7, 16, 22] to modify the local probability estimation.
They correct the traditional probability estimation by some corrected ratio that
shifts the probability toward the prior probability of the class. The most pop-
ular smoothing method is Laplace smoothing which estimates the probability
P (c|x) by k+1

n+|C| at a leaf node, where k is the number of training instances of

class c in the leaf node, n is the total number of training instances in the leaf
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node, and |C| is the number of classes. Laplace smoothing uses a uniform class
distribution, 1

|C| , as a prior knowledge to correct the reliability of probability

estimation. The more instances a leaf node owns, the less the prior knowledge
can affect. This can distinguish those leaf nodes which have the same proportion
of positive instances but have different sizes. Although the smoothing methods
improve the probability estimation by considering the reliability of the leaf node,
the instances in the same leaf node still have the same probability estimations.

Other methods, like [12, 1], suggest that the probability estimations of the
instances in the same leaf should be different. In [12], they average probability
estimations from all leaves of the tree to produce different probability estima-
tions in the same leaf node. However, this method only uses the attributes on
the tree. It might easily produce duplicate points in pure nominal datasets, es-
pecially with a high dimensional dataset and a small tree. The method in [1] is
similar to our proposed method. They propose a geometric score to distinguish
the probability estimations of instances in the leaf. This method is limited to
numerical attributes.

3 Hierarchical Ranking of Decision Trees

In order to keep the intelligibility and replace the same probability estimation in
the leaf node, we describe a hierarchical ranking strategy by combining decision
trees and Näıve Bayes. In first step, we rank the rules, and secondly we rank the
instances in the leaf nodes.

3.1 Ranking Rules and Ranking Instances in a Leaf Node

In the first step, we adopt the smoothing techniques to rank the rules produced
by decision trees. As described in section 2, many smoothing techniques have
been proposed to improve the ranking of leaf nodes. The smoothing techniques
will help us to differentiate the leaf nodes which have the same proportion of
positive class instances without destroying the tree structure. We note that these
smoothing techniques are often applied to unpruned trees in order to produce
more different probability estimations. This might reduce the intelligibility of
the tree because of the more complex rules. In our proposed method, Laplace
smoothing is applied to the pruned trees directly. We then distinguish instances
in the same leaf node via an embedded leaf Näıve Bayes.

Distinguishing instances in the same leaf node is an important part of decision
trees ranking. In order to achieve this goal, we adopt the following strategies in
the second step:

• Embedding a Näıve Bayes classifier in each leaf node,
• Combining leaf Näıve Bayes classifier and global Näıve Bayes in estimating

P (ai|c), where ai is the ith attribute and c is the given class,
• Using weighted Näıve Bayes classifier to incorporate the information pro-

vided by non-tree attributes.

We will discuss them in details in the following subsections.
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3.2 Leaf Näıve Bayes Classifier

Näıve Bayes usually works well when tested on actual datasets, particularly
combined with some of the attribute selection procedures [21]. Like decision trees,
it also can deal with hybrid data types by the normal-distribution assumption of
numerical attributes. For these reasons, we embed Näıve Bayes in each leaf node
to rank instances. Since our goal is to distinguish the probability estimations
of instances in a leaf node, the information of instances in the leaf node should
be more important than that of the entire training set. Thus, we only use the
instances in the leaf node to generate the leaf Näıve Bayes mainly and the
information given by the global Näıve Bayes will be treated as prior knowledge
for the leaf Näıve Bayes.

3.3 Estimating P (ai|c)

Leaf Näıve Bayes can describe a good local distribution of P (ai|c) in the leaf
node, but has less reliability due to the smaller size of training instances in a leaf
node. In order to keep the local information and raise the reliability, we take the
information from global Näıve Bayes into account when estimating P (ai|c) in
leaf Näıve Bayes. For the flexibility, we also harmonize the information from leaf
Näıve Bayes and global Näıve Bayes with a varied weight. How to determine the
weight will be discussed more in section 4. Since Näıve Bayes adopts different
strategies in estimating P (ai|c) for numerical and nominal attributes, we will
describe our combination method for the two type attributes respectively.

In estimating P (nominali|c), leaf Näıve Bayes will cause zero frequency more
seriously. Traditionally, Näıve Bayes use Laplace smoothing to overcome zero fre-
quency problem. Instead of using uniform prior knowledge in Laplace smoothing,
we use m-estimate smoothing technique [7] to carry the prior knowledge from
the entire training set as follows:

P (nominali|c) =
ki + w · ti
N + w · M

(1)

where ki

N
and ti

M
are the estimations of P (nominali|c) in the leaf Näıve Bayes

and global Näıve Bayes respectively. The w is a nonnegative weight parameter for
controlling the importance of the prior knowledge given by global Näıve Bayes.
It can be varied for each leaf node.

The smoothing technique is only suitable for nominal attributes. It means
that we need a new strategy to combine the information of the leaf Näıve Bayes
and global Näıve Bayes in estimating the probability density measure for the nu-
merical attributes. The probability density measure of ith attribute is denoted
by P (numericali|c) if the ith attribute is numerical type. We abused the nota-
tion a little bit here. Generally, Näıve Bayes conducts numerical attributes with
normal-distribution assumption, which can be determined by the sample mean
and sample standard deviation of the numerical attribute. The local probability
is replaced by a local probability density measure. Inspired by the idea in deal-
ing with nominal attributes, we combine the sample mean and sample standard
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deviation of P (numericali|c) in the leaf Näıve Bayes , denoted by Meanlocal and
Stdlocal, and that in the global Näıve Bayes, denoted by Meanglobal and Stdglobal,
with convex combination. That is:

Meani = (1 − w) · Meanlocal + w · Meanglobal

Stdi = (1 − w) · Stdlocal + w · Stdglobal (2)

where w is the varied weight of the prior knowledge similar to the case of nominal
attribute. Finally, the normal distribution of the ith attribute given the class c

in the leaf node is determined by Meani and Stdi.

3.4 Using Weighted Näıve Bayes

Attributes independent and equally important are the assumptions of Näıve
Bayes, but these assumptions will not always hold in real data especially in high
dimensional data. In fact, many research focus on breaking these assumptions
to improve the performance of Näıve Bayes, like Bayesian network and weighted
Näıve Bayes. Bayesian networks focus on breaking the attribute independence
assumption, but it still supposes attributes are equally important. On the other
hand, weighted Näıve Bayes focuses on breaking attributes equally important
and keep the independent assumption. Here, we will describe how weighted Näıve
Bayes can break the equally important assumption. The original Näıve Bayes
classifier is defined as follows:

NB(x) = arg
c

max P (c)

n∏

i=1

P (ai|c), x = (a1,a2, · · · , an), c : class (3)

If we increase the degree of P (ai|c) in Näıve Bayes classifier, that will enlarge
the influence of the attribute ai(see Table 1). Thus, we can extend Näıve Bayes
to weighted Näıve Bayes as follows [10]:

WNB(x) = arg
c

max P (c)
n∏

i=1

P (ai|c)
wi , x = (a1,a2, · · · , an), c : class (4)

In the weighted Näıve Bayes classifier, we break the equally important assump-
tion by using different weights.

Decision trees are usually built by the subset of all attributes. Intuitively, only
using the attributes on the tree in leaf Näıve Bayes should be more represen-
tative. In fact, removing redundant attributes will be good for the performance
of Näıve Bayes. In other words, only using the attributes on the tree is similar
to the attribute selection. However, only using the attributes on the tree will
easily produce many duplicate points in pure nominal datasets, especially with
a high dimensional dataset and a small tree. We have mentioned this phenom-
enon in section 2. In order to overcome the duplicate points problem, we use all
attributes to build up the leaf Näıve Bayes but give tree attributes more weight.
The attribute weighting is closely related to attribute selection. Thus, we also
can emphasize the importance of tree attributes by using attribute weighting.
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Degree 1 Degree 2 Degree 3

P (ai|c1) 0.5 0.25 0.125

P (ai|c2) 0.1 0.01 0.001

difference 5 times 25 times 125 times

Table 1. The effect of different degrees of P (ai|c)

4 Numerical Results and Comparisons

Using accuracy in evaluating models will completely ignore probability estima-
tions produced by learning models. As the purpose is probability estimations or
ranking, accuracy is not sufficient in measuring and comparing learning models.
The area under the ROC (Receiver Operating Characteristics) curve, or simply
AUC, has been shown as an measurement for the quality of ranking [3, 11, 12].
The ROC curve was first used in signal detection theory to represent the tradeoff
between the hit rates and false alarm rates [6, 9]. It has been extensively studied
and applied in medical diagnosis since 1970s [14, 20]. The AUC can be expressed
in a simpler form: if the sample contains m positives and n negative examples,
we can denote AUC simply by the following Wilcoxon-Mann-Whitney statistic
[4]:

AUC =

∑m

i=1

∑n

j=1 IP (xi)>P (xj) + 1
2IP (xi)=P (xj)

mn
(5)

where P (x) is the probability estimation from learning models and Iπ is defined
to 1 if the predicate π holds and 0 otherwise.

In our experiment, we evaluate our proposed method and compare with other
methods on 7 two-class datasets from the UCI repository. The datasets are de-
scribed in Table 2. In Lymphography dataset, we throw away the 4 instances
to reduce the classes. In numerical results, we repeat 5-fold cross validation on
each dataset 5 times and report the mean of them.

4.1 Comparing Our Proposed Method with Other Methods

In this section, we will compare our proposed method with C4.4 [17], C4.5, and
C4.5-L. The C4.5 is the most popular decision trees algorithm which incorporates
with some pruning strategy for a better classification result. While the C4.4 does
not prune decision trees, it might cause the over-fitting problem but will give
a better ranking result. Another difference between the C4.5 and the C4.4 is
that the C4.4 ranks the instances with Laplace smoothing and C4.5 does not. In
our experiment the C4.5-L denotes C4.5 with Laplace smoothing. Table 3 shows
the numerical results of them. The number before the slash is the AUC score
and the other number is the quantity δ = A1−A2

1−A2

[5], where A1 and A2 are the
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Dataset Size Nom. Attributes Num. Attributes

Tic Tac Toe 958 9 0

House Vote 435 16 0

SPECT 267 22 0

Bupa 345 0 6

Ionosphere 351 0 34

Sonar 208 0 60

Lymphography 142 15 3

Table 2. Descriptions of datasets

AUC scores of Method1 and Method2 respectively. The performance metric δ

indicates what percentage of Method2’s missing ROC area (1 − A2) is covered
by Method1. In Table 3, we use C4.5 as the counterpart method (Method2)
and compute the δ values of using C4.4, C4.5 and our proposed method as the
Method1.

As we mentioned above, we need to determine two parameters, weights of
prior knowledge and weights of attributes, in our method. The details of tuning
heuristics and procedures will be discussed in Section 4.2. In Table 3, we use
the optimal parameters followed by Section 4.2, and we can observe that C4.4 is
better than C4.5 and C4.5-L. Therefore, we use a paired t-test on our proposed
method and C4.4 with a 95% confidence coefficient. The test result shows our
method is significantly better than C4.4 in AUC scores, except the dataset Tic
Tac Toe (see Table 4). This shows that our method can significantly improve the
ranking of decision trees. In fact, our proposed method is C4.5 with smoothing
techniques and leaf weighted Näıve Bayes. In other words, we not only can rank
the leaf nodes with smoothing techniques but also have the ability to rank the
instances in the leaf nodes. Moreover, we also can show the necessity for ranking
instances in the leaf nodes because instances with equal probability estimations
in the same leaf node will be treated as random ranking within the leaf node
(see Fig. 1).

4.2 Parameters Tuning

In order to increase the reliability, we take the information from the global Näıve
Bayes into account when estimating P (ai|c) in a leaf Näıve Bayes. From the idea,
there is a point of view to regard for the weight of the global Näıve Bayes. If there
are enough instances in the leaf nodes, the weight of prior knowledge should be
less. Therefore, we will take a varied weight for each leaf node when adjusting
P (ai|c) via the m-estimate smoothing technique and convex combination. We
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Fig. 1. ROC curves of C4.5 (left top), C4.5-L (right top), C4.4 (left bottom), and our
proposed method (right bottom) of a particular fold of SPECT dataset.

define our varied weight to achieve our idea as follows:

wi = 1 − αi, where αi =
number of instances in the leaf node i

number of the entire training instances
(6)

Table 5 shows the results. In the second and third columns, we fixed wi = 0 and
wi = 1 for all leaf node i. They represent only using the leaf Näıve Bayes and
the global Näıve Bayes respectively. Obviously, the varied wi = 1 − αi is more
appropriate of them. The result also shows that combining the leaf Näıve Bayes
and global Näıve Bayes is good for ranking instances in the leaf node.

As we mentioned in Section 3, removing redundant attributes will be good for
the performance of Näıve Bayes. Unfortunately, removing redundant attributes
may easily produce duplicate instances in pure nominal datasets. In order to
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Dataset C4.5 C4.5-L C4.4 Hierarchical R.

Tic Tac Toe 0.8896 0.9050 / 13.9% 0.9281 / 34.8% 0.9111 / 19.5%

House Vote 0.9603 0.9706 / 25.9% 0.9746 / 36.0% 0.9885 / 71.0%

SPECT 0.7769 0.7978 / 9.4% 0.7782 / 0.5% 0.8433 / 29.8%

Bupa 0.6743 0.6884 / 4.3% 0.6942 / 6.1% 0.7045 / 9.3%

Ionosphere 0.8922 0.9326 / 37.5% 0.9314 / 36.3% 0.9526 / 51.6%

Sonar 0.7322 0.7836 / 19.2% 0.7836 / 19.2% 0.8137 / 30.4%

Lymphography 0.8263 0.8471 / 12.0% 0.8554 / 16.8% 0.8877 / 35.4%

Table 3. Numerical results of C4.5, C4.5-L, C4.4, and our proposed hierarchical rank-
ing method on seven public available datasets in UCI repository

Dataset p-value

Tic Tac Toe 0.9996

House Vote 0.0108

SPECT 0.0434

Bupa 0.0287

Ionosphere 0.0125

Sonar 0.0238

Lymphography 0.0193

Table 4. The p values of the paired t-test on our proposed method and C4.4

overcome this problem, we use all attributes but decrease the weight of non-tree
attributes in leaf weighted Näıve Bayes. Table 6 shows the results of different
weights on non-tree attributes. We fix the weight of tree attributes and vary the
weight, w, of non-tree attributes to 0, 0.01, 0.1, 0.5, and 1. w = 0 and w = 1 means
only using tree attributes and all attributes with equal weights respectively. w

= 0.5 had the best performance in our experiment. It shows that our strategy of
weighting is good for the performance. Note that we have better improvement
in two pure nominal datasets, House vote and SPECT, by comparing with w =
0. In our observation, only using tree attributes will result in producing some
equal probability estimations in the leaf node because of dimension reduction. It
means that using weighted Näıve Bayes will not only raise the ability of Näıve
Bayes, but also solve the problem of dimension reduction.
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Dataset w = 0 w = 1 w = 1 − α

Tic Tac Toe 0.9110 0.9079 0.9111

House Vote 0.9792 0.9885 0.9885

SPECT 0.8286 0.8437 0.8433

Bupa 0.7020 0.7042 0.7045

Ionosphere 0.9441 0.9489 0.9526

Sonar 0.8046 0.8135 0.8137

Lymphography 0.8770 0.8902 0.8877

Table 5. The effect of different prior knowledge weights in estimating P (ai|c), where
α is defined by (6). In this table, we use the same weight 0.5 of non-tree attributes for
all.

Dataset w = 0 w = 0.01 w = 0.1 w = 0.5 w = 1

House Vote 0.9790 0.9883 0.9881 0.9885 0.9880

SPECT 0.8310 0.8336 0.8416 0.8433 0.8403

Ionosphere 0.9471 0.9497 0.9507 0.9526 0.9518

Sonar 0.8089 0.8096 0.8113 0.8137 0.8140

Lymphography 0.8846 0.8882 0.8882 0.8877 0.8769

Table 6. Different weights of non-tree attributes. In this table, we use the same varied
weights of prior knowledge for all.

5 Conclusion and Future Work

In this paper, we present a hierarchical ranking method for decision trees. We
rank the rules as well as the instances fit in with the rules. This method combines
decision trees and Näıve Bayes via embedding leaf weighted Näıve Bayes in
each leaf node. The hierarchical ranking strategy will retain the intelligibility
of decision trees. Another important feature of our method is that it can deal
with hybrid datasets as well. Experiment results show that our proposed method
improves the AUC score over other methods. It means that ranking instances in
the leaf node works in improving the ranking performance.

Our method needs to set two parameters, weights of prior knowledge and
attributes. For the weight of attributes, we simply assign two different weights
for tree attributes and non-tree attributes in our experiments. In fact, how to
determine the weight of weighted Näıve Bayes is an interesting issue [8]. In our
future work, we will study how to determine different weights for each attribute
and take the depth of the split attribute in decision trees into account.
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